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The second-neighbour Ising chain as a model for spin-phonon 
interactions : susceptibility 

I G Enting 
Department of Physics, Monash University, Clayton, Victoria 3 168, Australia 

MS received 4 May 1972 

Abstract. The connection between Ising systems with spin-phonon interactions and k ing  
systems with second-neighbour interactions is developed, treating the phonon spectrum 
by the Einstein approximation. The effective spin Hamiltonian has competing interactions 
of the type that Stephenson has shown lead to a ‘disorder point’, a temperature a t  which the 
character of the spin-spin correlation function changes. The one-dimensional case is taken 
as an example and Stephenson’s susceptibility expression derived by a new method. The 
relevance of disorder-point phenomena and the associated anomalous susceptibility to 
spin-phonon systems is discussed. 

I. Introduction 

Frankel and Rapaport (1970) have recently investigated the properties of an Ising chain 
with nearest-neighbour and second-neighbour interactions. They derived formulae for 
the zero-field free energy and for various correlation functions in finite open-ended 
chains and described an application of their results to the study of binary alloys. 
Stephenson (1970) also investigated this system as an example of the occurrence of 
disorder points. A disorder point is a temperature at which the behaviour of the spin- 
spin correlation functions changes. For a second-neighbour Ising chain the change is 
from a monotonic decay to an oscillatory decay with temperature dependent wavelength. 
The present results reproduce Stephenson’s expression for the susceptibility, using matrix 
methods without having to transform the spin variables. Morita and Horiguchi (1972) 
have calculated the ground states in the presence of an applied field. The present work 
is motivated by the connection between Ising systems with distant-neighbour interactions 
and Ising systems with spin-phonon interactions. The general formalism was derived 
by Bolton and Lee (1970). A simplified derivation for the special case of an Einstein 
phonon spectrum is presented in 8 2. These results can also be derived by assuming the 
phonon frequency is independent of the wavelength and using the Bolton and Lee 
formulae directly. Section 3 derives the susceptibility of a second-neighbour Ising chain. 
The matrix method used can also be applied to chains with third-neighbour interactions. 
Section 4 discusses the general properties of the susceptibility and possible applications 
to spin-phonon systems. The implications of disorder-point phenomena for the theory 
of spin-phonon interactions are also considered. 

2. The Hamiltonian 

If a system of Ising spins s(ri) = f 1 are located at lattice sites ri and nearest-neighbour 
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spins interact with a strength that varies linearly with distance, then the Hamiltonian 
can be written : 

where aj are the lattice basis vectors and ii(~~)~,fi(v~)~ are components of the position and 
momentum operators d(ri),)(ri), for the spin at  v i .  These operators obey the normal 
commutation relations. 

The first terms ofthe Hamiltonian correspond to treating the phonons by the Einstein 
model approximation. 

If the substitution 

is made, then the Hamiltonian can be written : 

Since the commutation relations of the u ' ( v ~ ) ~  are the same as for the u ( v ~ ) ~ ,  the first 
two terms still represent Einstein model phonons. The remaining terms represent an 
independent system of Ising spins with first- and second-neighbour interactions. This 
part of the Hamiltonian can be rewritten for one-dimensional cases as 

E? = - ( ~ , s ~ s ~ + ~ + ~ ~ s ~ s ~ + ~ + m ~ s ~ )  
N 

j =  1 

+ N  

i =  1 
= - 1 { J l ~ 2 i ~ 2 i + l + J l ~ 2 i + ~ ~ ~ i + 2 + J ~ ~ 2 i s 2 i , 2 + J , s , i + l ~ ~ i + ~  

The assumed boundary conditions are 

s N + l  = s l ,  s N + 2  = s 2 ,  N even. 

3. Thermodynamics 

The thermodynamic properties of the system can be derived from the partition function : 

2 = Tr exp -- . 
spin States ( 

Dobson (1969) reviewed in detail how the partition function can be expressed in terms 
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of a transfer matrix, and showed that the results obtained did not depend on the boundary 
conditions or the symmetry of the matrix. 

Using the variables : 

the transfer matrix is 

1 

The partition function is 

= Tr I,.*N = ).+" + itN + A j N  + jLtN (8) 
where 3., 2 A, B i3 B %, are the four eigenvalues of the matrix V. In the limit N --+ CO, 

the free energy becomes 

F = - k T l n Z - +  -$NkTlnA, if i., # A,. (9) 
The magnetization is 

so that the susceptibility is : 

The eigenvalues are found from the quartic equation 
4 

det(V-%Z) = 1 qiAi = 0. 
i = O  

Although the general solution of a quartic can be expressed in closed form, so that the 
free energy in arbitrary fields is known, it is easiest to find the susceptibility less directly. 

If y(") = d n y / d Z n  then differentiating equation (12) with respect to the 2 gives: 
4 

with 

( ) b i ) ( n + l )  = i ( A i -  l ) ( m ) A ( n - m +  1 ) c n  
m .  

m= 0 

The C; are the binomial coefficients. 

(14) 
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From this point on only quantities at zero field are considered. Let 

O)) 
lo = ll(X = 0) = exp 

Equation (27) shows that 41") = 0 for all odd m. An inductive proof shows that (Ai)(") = 0 
for all i and all odd n. If one has ( A i ) ( 2 n +  ') = 0 for all n < m then equations (13) and (14) 
give 

4 

Therefore 

and 

(17) ( ~ i ) ( 2 m +  1) = 0 

Since for m = 0 equations (16a) and (16b) hold without any initial assumptions, then 

For the second derivatives 
equation (17) holds for all m. 

4 

( 2 i ) U )  = i ~ ~ ( 2 ) ( l i -  1). (19) 

Equations ( 1 3 )  and (14) enable one to calculate all field derivatives of the free energy, 
at  zero field, once A. is known. If the transfer matrix is between successive groups of n 
Ising spins, it will be of dimension 2" x 2" so that finding the eigenvalues involves solving 
a polynomial of degree 2". In zero field the degree of the polynomial can be reduced by 
a change of variable (Frankel and Rapaport 1970) or equivalently by a matrix trans- 
formation (Dobson 1969). The equations above enable one to calculate the susceptibility 
once the full transfer matrix and the zero-field free energy are known. 

In the present case a further simplification results from the fact that the characteristic 
equation, equation (12), can be expressed as : 

4 

(AZ  - Aa+ b)* -A2c2 = 0 = q i l i  for X = 0.  (20) 
1=0 

Differentiating with respect to c gives 

Since equation (27) shows that a ,  b, c are non-negative the largest eigenvalue is 

A. = i ( ~  + C )  ++{(U+ c ) ~  - 4b)"' (22) 
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giving 

J,: = &(U + C )  - b 

J* 0 - - -  22 
O’C { ( a  + c)’ - 4b) ‘” 

so that 
4 

2 qii>.i-’ = 2 c i , { ( ~ + ~ ) ’ - 4 b ) ~ ’ ~ .  
i = O  

From equations (1 l), (18) and (19) the initial susceptibility is: 

after using qi2’ = qb’’ = 0 and equations (22), (23) and (24). 

0 = iL4 - i { AB( h t h - l )  + 2~ - B )  + i2  { B ~ ( A  + A - ’) - 2 ~ -  t 2(h + h - l )  ( B’ - I)} 

The characteristic equation is actually 

-3 , { (1~+h-’ )BA-’ (B--B-’ )2+2AB(B-B-’ )2)  +(B-B-’)4. (27) 

At zero field i t  has the form of equation (20) with : 

U = (A+A-’)B 

b = (B-B-’)’ 

c = 2B-‘ 

The susceptibility is then 

(30) 
“2B{(2A + 2 + A2B2 - B2)3,, - B(B-  B -  ‘)’(A - A - ’)} - 

;CO = k T ~ 0 { ( A - A - ’ ) 2 8 2 + 4 ( A + A - 1 ) + 8 ) 1 i 2  

with 

io = ) ( A  + A -  ‘ ) B +  B -  ’ ++{(A - A-’)’B2 +4(A+ A -  ’)+ 83”’. (31) 

This value of 2o is, as required, the square of the value obtained by Frankel and Rapaport 
and by Stephenson. The susceptibility expression has been shown to reduce to the form 
obtained by Stephenson. 
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4. Results and conclusions 

Frankel and Rapaport have pointed out that for various ratios of interaction strengths 
there is a change in the ground state ordering. J ,  = 0, J ,  > 0 defines a boundary between 
ferromagnetic and antiferromagnetic ground states with the exact boundary cor- 
responding to two independent, interpenetrating chains with ferromagnetic ground 
states. The susceptibilities behave as expected, diverging as T -+ 0 in the ferromagnetic 
case and tending to zero as T + 0 in the antiferromagnetic case. The boundary 
J ,  = - i J z  > 0 is a similar boundary between ferromagnetic and antiferromagnetic 
ground states. 

At the boundary J ,  = i J ,  < 0 the change is between two possible antiferromagnetic 
ground states. Near the boundary, the susceptibility is anomalously large compared 
to the susceptibility further from this boundary. For J ,  = $1, < 0 x -+ as T -+ 0. 
The qualitative explanation is that the two interactions compete so that the spins are 
only weakly coupled. This is shown by the spin-spin correlation functions obtained by 
Rapaport and by Stephenson which show how the spins are comparatively free to align 
in response to an applied field instead of being locked into a local antiferromagnetic 
ordering. 

Stephenson has shown that disorder points occur for --\J1\ < i J 2  < 0. The 
susceptibility varies smoothly through the disorder temperature and does not show any 
distinctive behaviour except near the J ,  = 3 J 2  < 0 boundary. 

The transformation from equations (1) to (4) is equivalent to using the particular 
case of an Einstein phonon spectrum in the effective spin Hamiltonian of Bolton and 
Lee (1970). The general form of the effective Hamiltonian has the original nearest- 
neighbour interaction plus additional four-spin interactions. In equation (4) these 
take the form s , s , + ~ ( s , + , ) ~  which for spin 3 reduces to a two-spin interaction. If the 
phonon spectrum corresponding to nearest-neighbour harmonic interactions is used 
then, in one dimension, the four-spin termsare ofthe form (s,s,+ which will be constant 
for spin 4 (Mattis and Schultz 1963, Bolton and Lee 1970). 

In three dimensions it can be shown that the Debye approximation for the phonon 
spectrum also leads to a negative coupling between spins separated by two lattice vectors 
(Lee and Bolton 1971). There are of course additional four-spin interactions. Although 
the Einstein phonon spectrum is unrealistic in one dimension, the effective spin Hamil- 
tonian might be expected to give rise to behaviour analogous to the high temperature 
behaviour of a three-dimensional magnetoelastic system. It seems probable that in an 
antiferromagnetic system competition between the interactions will lead to an enhanced 
susceptibility near the Nee1 point in three dimensions as it does in one dimension. 

To extend the prediction of anomalously large susceptibility to a three-dimensional 
system, the following conditions must hold. 

(i) The Einstein phonon must be capable of giving the dominant contribution to 
the true spin-phonon interaction. This is not true in one dimension but the results of 
Lee and Bolton (1971) suggest that it may be true in three dimensions, particularly in 
materials where the Debye temperature is well below the Nee1 temperature. 

(ii) The competing interactions must lead to an enhanced susceptibility in three 
dimensions. To verify this would involve a study of a fourth-neighbour Ising system. 

(iii) The anomalous behaviour must occur in a region that is actually accessible to 
the system. Lee and Bolton (1971) have shown that a sufficiently strong spin-phonon 
coupling can cause a second-order transition to become first order. When this type of 
system is treated by the mean-field approximation the solution formally corresponds to 
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transforming the critical point on to a re-entrant branch of the spontaneous magnetiza- 
tion curve. The transformed critical region no longer corresponds to actual equilibrium 
states of the system. 

The three factors listed above indicate the need for a study that goes well beyond the 
tentative arguments suggested here. The importance of this investigation stems from the 
fact that the susceptibility has been increased by the spin-phonon interactions. In 
contrast, the formalism of Mattis and Schultz (1963) which is based on homogeneous 
strains, indicates that the susceptibility should be less than the maximum susceptibility 
of the incompressible system. This means that a detailed study of the susceptibility may 
reveal a qualitative difference between theories of magnetoelastic effects based on 
homogeneous strains and theories based on spin-phonon interactions. 

The range of values for which disorder points occur is - IJ,/ < fJ, < 0. This means 
that disorder-point phenomena may be expected for all but extremely strong spin- 
phonon interactions. Stephenson has shown that as well as a disorder temperature T,, 
there is a temperature T .  at which the second-neighbour correlation function changes 
sign. This behaviour severely restricts the range of validity of the work of Bolton et a1 
(1972) whose approximate descriptions of the second-neighbour correlation function do 
not reflect this change of behaviour. 
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